The effects of local network structure on disease
spread in coupled networks
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Abstract Epidemiology has long used human interaction patterns to understand
spreading dynamics. Recently network scientists have embraced the notion that
these pattern are best described using a complex multi-layered system, a network of
networks, yielding a stream of literature focused on understanding spreading in such
coupled systems. Adding this macro level perspective to disease spreading, focusing
on the interaction among systems, has shifted focus away from the role of local
(within-system) structure. In this paper, using a multi-level Agent-based model, we
highlight the importance of the local structure in determining spreading dynamics in
coupled settings. We show that the local dynamics in both the focal and neighboring
networks, play a significant role in determining focal dynamics. As both are driven
by the local structure this highlights a need for incorporating structural details across
all levels for accurate modeling of disease spreading dynamics.

1 Introduction

Understanding the spread of disease in populations has long been a focus of the
field of epidemics. The inherent difficulty of measuring disease spread has resulted
in a tendency to rely on modeling to gain insight into epidemics. Traditional epi-
demic models assumed a compartmentalization of the population into different states
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(Susceptible, Infected, Removed) and assumed homogenous mixing of such compart-
ments. A vast body of work created since has incorporated a network perspective in
modeling of epidemics (eg. [17, 18]). The underlying assumption in these studies is
that the network structure serves as the infrastructure for propagation and therefore
bounds the dynamics that can occur. Adoption of such a network perspective has
yielded an increased understanding of disease spreading behavior.

The notion that spreading phenomena are based on more complex interaction patterns
has more recently gained traction in network science. Resulting in studies of cascades
in inter-dependent [5, 6], multi-layered [2, 4, 7, 14], and multiplex networks [11].
Specifically in the field of physics, considerable progress has been made in model-
ing and in understanding how coupling between networks affects the dynamics in
multi-layered systems [4, 12]. This body of work has highlighted that the inter-layer
connections —both in terms of structure [10] and strength [8, 11]- strongly impacts
the spreading dynamics [7], highlighting the importance of adopting a coupled sys-
tem perspective for spreading phenomena.

While previous examples are all part of the set of coupled system studies, capturing
the idea that spread occurs in systems which consist of multiple coupled systems, the
way in which the system is described varies strongly across studies. For example, a
multiplex network setting assumes a single set of nodes (agents or actors) connected
by multiple types of ties, whereas multi-layered and inter-dependent settings assume
two (or more) systems, each with a set of separate nodes and ties that are (partially)
connected by an inter-system layer.

Especially in social contexts, which are based on the behavior of people, the multi-
layered perspective seems to naturally fit. People have a variety of drivers for multiple
types of interactions, and mobility patterns (and thus interaction patterns) that are
strongly bound by geographical constraints. It is easy to interact with those that are
geographically proximate, e.g. within a city of residence. Although long geographical
jumps are possible (for example by air travel) such jumps are often much less likely.
Therefore, the human interaction system is both fundamentally multiplex (many
types of interactions) and multi-layered (mobility on different scales). In this system,
locally dense networks across the globe are coupled by means of occasional long
jumps. The inherent structure of this system makes any propagation process based
on the human interaction a prime example of a phenomena that should be studied
using a coupled networks approach.

In line with this reasoning, [2] is a prime example of adopting a coupled system
approach in epidemiology, and the model presented is a big step forward from the
single system model. It should be noted that, albeit being multi-layered, this is not a
model of coupled networks as the local layer consists of a gravity model rather than
a network model. While this might have been a modeling choice, as network data
with this granularity is hard to obtain, it is indicative of a general issue that applies to
most coupled network research. As the scope shifts from a single networked system
towards a system of coupled networks, the focus shifts from characteristics of the
single network towards the characteristics of layer that connects the networks; from
the local structure towards the structure of inter-system layer. In doing so the lessons
learned from the local structure seem to be more and more forgotten and/or ignored.
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There are many studies that have shown that, in single network settings, the network
structure is a critical factor if one wants to understand, predict, and steer spreading
dynamics. For example, it is known that shorter average path lengths greatly increase
spreading potential [21], skewed degree distributions allow for even faster and more
widespread disease cascades [1, 18] and that local clustering improves local spreading
but hampers widespread disease cascades [19]. Yet in coupled network studies these
local influences are commonly oversimplified, receive little attention, and are by no
means systematically addressed. This raises the question whether, in the context of
coupled networks, the local structure indeed plays no role (as suggested by [15]), or
whether this role is falsely being ignored.

2 Methodology

Exploring the role of local network structure on disease spread in a coupled setting
requires a model consisting of two main components; a system consisting of coupled
network structures, and a disease spreading mechanism. We incorporate these two el-
ements in an agent-based model (ABM) in NetLogo [22], and using LevelSpace [13]
we adopt a multi-level modeling approach [16] for the coupled network scenarios.

2.1 The structure of the system

Building on the notions put forward by [2]) we create a system that consists of two
types of layers: the “within-city” layer and the “between-city” layer. The within-city
layer describes the structure of a single city which consists of a population of 1000
individuals which are connected in a fixed network structure. The network structure is
one of the classical network topologies; Erdos-Rényi [9], scale-free [3], small-world
[21] with a rewire probability of 0.05, or a regular ring lattice. The between-city layer
consists of a model that captures the effects of coupling, each within-city layer is
modeled separately and is connected by means of the between-city layer. Therefore
the between-city layer acts as a bridge between the within-city models, effectively
making this a multilevel model.

In this study we are interested in the effects of the local structure, the structure of
the within-city layers, on disease spread dynamics in coupled settings. We know
from previous literature that the inter-system (between-city) structure and strength
are critical factors that influence the local dynamics, therefore we aim to reduce the
impact of this layer as much as possible. We do so by simplifying the between-city
model in three ways. First, we assume that there are only two coupled cities. Second,
we assume that any between-city interaction will occur randomly. Both assumptions
reduce the complexity of the between layer structure, of which a schematic repre-
sentation can be found in Figure 1. Third, we assume that the spreading dynamics
within and between cities are the same. More details on the dynamics can be found
in the next section. Note that the third assumption implicates that the type of ties
within and between cities are the same. Therefore one could model this as single
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Fig. 1: In our model two within-city networks (n = 1000) with a fixed structure are
coupled by randomly occurring encounters across the layers

giant network, where every individual in one cluster (city) is connected to every
individual in the other cluster (be it with lower weights). Note that the resulting
model would have orders of magnitude more links than the multi-level approach
adopted in our study. For our parameter-set, in which cities are relatively small, the
number of links in a single network would increase from 10,000 (5000 links in each
city), to 1,010,000. This growth in the number of links would significantly increase
the computational resources required, indicating that a multilevel modeling approach
is far more powerful and scalable in coupled network settings.

2.2 description of disease spreading rules

In line with traditional compartment models, we assume individuals can be in one of
four states: Susceptible, Exposed, Infected, or Removed (SEIR). All individuals are
by default in the susceptible state. At the beginning of the simulation, two individuals
in the focal city are exposed to the disease, effectively seeding the disease to 0.2%
of that city. By interacting with susceptible and infected alters, individuals can then
move from Susceptible — Exposed — Infected — Removed states.

We assume that disease spread is caused by interactions (encounters) rather than the
network structure itself. One can imagine the network structure as describing the
structure of friendships, this structure provides the infrastructure of interactions. This
means that having a friend that is sick does not put one directly at risk, however,
interacting with that friend does. It is therefore the encounters in the network which
drive the spread of disease, not the structure itself. We assume that during each
time-step (tick) of the simulation, each Exposed and Infected individual has a certain
number of encounters with its network neighbors. The number of such encounters is
drawn from a Poisson distribution with a mean that is conditional on the state of the
actor which can be varied in our model. Exposed individuals have a mean encounter
rate of cgg while infected individuals have a mean encounter rate of ¢;g. We assume
that the social activity (number of encounters) of individuals depends on how how
sick they are, hence Exposed (asymptomatic) individuals will have a higher number
of encounters than Infected (symptomatic) ones.

The neighbors encountered are chosen randomly and independently; a neighbor
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may be encountered multiple times in a single tick. Note that this means that the
number of encounters an individual has is completely independent of their degree.
This ensures that varying degree does not directly influence the rate at which the
disease spreads. When comparing different network structures, keeping the encounter
rate independent of degree ensures that any differences we observe are a result of
the different network structures rather than different distributions of encounter rates.
An example to illustrate: if encounter rates were proportional to degree, almost all
individuals in the scale-free network would have a very low encounter rate (due to
their low degree) while all individuals in the ring network would have the same, mid-
sized encounter rate. This would make it impossible to distinguish if the observed
effects are caused by variations in network structure or encounter rate.

When an Exposed (or Infected) individual encounters susceptible neighbors they
become exposed with a given probability, which depends on the state of the individual
that encountered them (whether the source is exposed (igs) or infected (iss). Exposed
individuals automatically become infected after a certain duration which is drawn
from an exponential distribution with mean 1/6, and infected individuals become
removed after a certain duration also drawn from an exponential distribution with
mean 1/6.

In line with [19] all experiments use the following parameters:

e mean degree (for all network types): 10

e cps —mean number of encounters for exposed: 4

e ;s —mean number of encounters for infected: 1.25
e ipg — probability of infection from exposed: 0.05

e jjg — probability of infection from infected: 0.06

e 1/& —mean duration of exposed: 15
e 1/ — mean duration of infected: 15

As stated prior, disease dynamics follow the same logic in both layers (between-city
and within-city). Rather than adding ties and increasing the pool from which en-
counters are pulled, the between-city model will redirect a certain percentage of the
within-city encounters to be with individuals in the neighboring city. The reasoning
behind redirection rather than addition is that adding between-city encounters would
effectively change the rate at which disease can spread, which would make compari-
son across scenarios invalid. In our simulations 1% of the within-city encounters are
redirected to the other city, meaning that within-city encounters are reduced to 99%
of their initial rate in the single non-coupled city scenarios.

Selection of between-city encounters occurs completely random and independently,
where any individual in one city can encounter any individual in the other city. For
the purpose of this paper this way of modeling the between-city network is most
applicable, yet, future work should be performed that compares different methods
of connecting cities in order to understand interaction effects between the local
(within-city) and the inter-system (between-city) structures.
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2.3 Differential equation model

To create a base-line of disease spreading behavior we compare the within-city
Agent-based model (ABM) with the classic SEIR compartmental model based on
differential equations (DE). Similar to the ABM, in the DE model the population is
divided into four segments: susceptible (S), exposed (E), infected (), and removed
(R). Also similar to the ABM, the susceptible population becomes exposed at a rate
based on the infection rate and encounter rate of the exposed and infected populations.
The differential equations encoding these relationships are given in the following
equations:

% = —(cgsigsE + crsisl)S

% = (cgsigsE + cisijsl)S — €E
dr _

5 = €E 41

drR _

G =961

3 Results

To see if the simulation model behaves as intended, we start our analysis by re-
producing the study conducted in [19] in a single network setting. We find that, in
comparison, disease dynamics in our model (Figure 2) are stretched out over a longer
period of time but follow corresponding trends across various structures. The ob-
served delay is to be expected given our cities are 5x larger than those in the original
work. This makes it more time consuming for the disease to reach saturation, which
is indeed what we observe. As our disease spread dynamics are in line with [19], this
serves as a sign that the agent-based simulation model is behaving as intended.

The single city results show that the spreading dynamics in the ABM differ signifi-
cantly from those of a Differential Equation (DE) model; the peak load is much lower
and occurs much later. Note that, even though the DE model effectively allows any
individual to come into contact with any other individual, the number of encounters
in the network model is fixed to be the same as in the DE. Therefore these difference
do not stem from a reduced number of encounters in the network settings. Instead,
the observed differences in spreading speed arise from localized connections and
local clustering. The higher clustering increases the chance of inefficient encounters
—from sick to sick—, reducing the effective spreading rate [19].

We continue the analysis by using the ABM to study the effects of coupling of
within-city networks. While adding inter-city ties effectively adds a second mode
of spreading (not only within but also between cities) we correct for the potential
effects of such an increase in connectivity by keeping the rate at which individuals
encounter others equal across all scenarios. The results (shown in Figure 3) reveal
that the effect of coupling on the focal city dynamics is strongly conditional on the
structure of the focal city. On the one hand, in cities with Scale-free and Erdos-
Rényi networks, coupling does not result in any observable effect on disease spread
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Fig. 2: This figure shows the disease spreading dynamics in cities with varying
within-city networks. The top (and bottom) percentiles are depicted in greyscale
for a total of 1000 simulation runs in the Agent-based model. The dynamics of the
differential equation of the same disease are plotted in blue.

dynamics. On the other, in cities with a small-world or ring networks, the spreading
seems to be improved due to coupling. This is in line with previous work claiming
coupled networks can suffer from increased volatility [20]. These results suggest
that the effect of coupling on the focal city’s dynamics is strongly dependent on the
within-city network structure of the focal city.

It is interesting to note that the focal cities affected by coupling are those that have
structures with otherwise highly localized, and thus slow, spreading dynamics. This
might suggest that random pathways facilitated by the between-city layer (individuals
encountered in the neighboring city are chosen randomly) allow for long jumps which
are otherwise unavailable in the focal network structure. This suggests that coupling
effectively reduces the diameter of the focal city network via the between-city layer. A
more intuitive explanation is that due to the slow spread within the focal network there
is enough time for a second order spread —from the focal city to the neighboring
city and back to the focal city— to occur before the within-city dynamics have
saturated the focal city. The ring network (Figure 3b) clearly shows a second peak
of spreading after the initial peak seems to flatten. This suggests the presence of
the latter described second order spreading, in which the neighboring city causes
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reseeding in the focal city.

These results indicate that the timing of epidemics across coupled networks seems to
play a crucial role in the effects of such coupling. As the timing of an epidemic is
directly related to where a disease starts, the seed becomes a critical aspect in our
simulation. Seeding the focal city, as has been the case in previous analysis, causes
the epidemic in the neighboring city to occur with a lag. This lagging reduces the
potential impact of the neighboring city on the focal city and consequently the effects
of coupling will likely be dominated by the epidemic dynamics within the focal city.
To increase the potential effects of coupling we adjust our seeding location and repeat
the previous analysis. Now, rather than seeding the focal city, the neighboring city
will be seeded. The results (Figure 4) show that when the disease originates from the
neighboring city the effects of coupling become much more apparent, resulting in a
variety of dynamics in the focal city. When the focal city’s epidemic is lagging behind
those of the origin city —the city which was seeded with disease— the opportunities
for secondary infections increase substantially, but the extent to which they occur
depends on the disease growth rate in the the origin city. As we know this growth rate
is determined by the local structure (see Figure 2) the observed variance in coupling
effects should be attributed to the within-city structure in the origin city.
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4 Discussion

Previous research has identified that both network structure and coupling of networks
as drivers which can have significant effects on the local dynamics of disease spread.
The focus on understanding the effects of coupling has shifted the attention away
from the local structure as a driver, resulting in little systematic connection between
these two bodies of work. Consequently, the effects of local network structure seem
to be poorly integrated in the coupled network literature, both in terms of describing
the structure of the local layers of interaction as well as the interaction of such local
structures with the inter-layer structure [10]. While both could be addressed using
the methodology presented in this paper, the scope of this paper is on highlighting
the role of local structure in a coupled network setting.

By means of an Agent-Based Model of two coupled cities we have shown that local
growth dynamics, caused by the local within-city structure, plays a crucial role in
understanding if and how coupling will affect the focal disease spreading dynamics.
While the relevance of the local (within-city) structure of the focal city has been
identified in both single [17] as well as in coupled network settings [10], we find
that the local (within-city) dynamics of the neighboring city also impacts the focal
spreading dynamics. This indicates that simply knowing the focal city’s structure
and the way in which it is coupled to other cities is not sufficient for understanding
spreading behavior. We find that the dynamics in neighboring cities, which depend on
the neighboring city’s local structure and the dynamics in the neighbor’s neighbors,
play a critical role in focal city’s spreading dynamics. The feedback among cities
not only indicates that the structural details in each of the local (within-city) layers
matters, but also that dynamics of the focal city cannot be accurately considered
without incorporating the coupled perspective.

Our results further emphasize the critical role of the effectiveness of the between-
city layer. We find that a sufficient amount of time is needed for the coupling to
become effective. This amount is conditional on both the focal growth rate (driven by
within-city structure) and neighboring growth rate (driven by neighboring within-city
structure). When the focal city’s disease load is saturated it will not likely be affected
by anything from the outside, making coupling a less important factor. This draws the
attention to path dependence as a driver of spreading in coupled networks. If enough
time is available, coupling can become efficient and has a strong effect on focal
spreading dynamics. This observation is in line with previous work that identifies
coupling strength as a key driver for coupling effects [8, 11].

While our model is conceptual in nature, there are interesting implications for health
policy that can be devised from it. A comparison among seeding locations (the
comparative plots are not included in this paper but can be done by comparing Figure
3 to Figure 4) indicates that for structures with relatively slow disease spreading
(Small-world, Ring) a scenario that has a seed outside the focal city results in earlier
and higher peak loads in the focal city, compared to the same scenario in which
the focal city is seeded. Therefore, outside infections provide a higher risk for the
focal population. In concrete terms, our results suggest that reducing disease load
within a city (or country) is best achieved by preventing coupling, and this indeed
seems to be a strategy implemented to prevent global pandemics like the 2014 Ebola
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spread. However, as very small coupling probabilities have significant effects and
complete decoupling seems infeasible, the effectiveness of such strategies will be
limited, especially as global travel increases over time. When complete uncoupling is
not an option it seems that reducing outbreaks in neighboring cities is more critical
for controlling the dynamics in the focal city.

This is somewhat in conflict with the current way in which health policy is imple-
mented; based on local agencies (be it the city, state, country) with local data and
dynamics. Our results suggest a different approach with global coordination, in
which the coupling of networks is considered and a global intervention strategy is
implemented, not only because it is socially desired, but because it is in each local
network’s own self interest.
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